
Algebraic and Coalgebraic Perspectives
on Interaction Laws

Tarmo Uustalu1,2 and Niels Voorneveld2(B)

1 Department of Computer Science, Reykjavik University, Reykjavik, Iceland
tarmo@ru.is

2 Department of Software Science, Tallinn University of Technology, Tallinn, Estonia
niels.voorneveld@taltech.ee

Abstract. Monad algebras, turning computations over return values
into values, are used to handle algebraic effects invoked by programs,
whereas comonad coalgebras, turning initial states into environments
(“cocomputations”) over states, describe production of coalgebraic coef-
fects that can respond to effects. (Monad-comonad) interaction laws by
Katsumata et al. describe interaction protocols between a computation
and an environment. We show that any triple of those devices can be
combined into a single algebra handling computations over state predi-
cates. This method yields an isomorphism between the category of inter-
action laws, and the category of so-called merge functors which merge
algebras and coalgebras to form combined algebras. In a similar vein, we
can combine interaction laws with coalgebras only, retrieving Uustalu’s
stateful runners. If instead we combine interaction laws with algebras
only, we get a novel concept of continuation-based runners that lift an
environment of value predicates to a single predicate on computations
of values. We use these notions to study different running examples of
interactions of computations and environments.

Keywords: Monad algebras · Comonad coalgebras · Interaction laws ·
Runners · Monad morphisms · Effects · Coeffects

1 Introduction

Programs can exhibit effects which impact how they are run. Such effects
(requests to the environment) may communicate with, invoke changes in, and
otherwise influence the environment, producing coeffects (responses to the com-
putation). How does one describe the protocols of such interactions?

Katsumata et al. [7] proposed to use (monad-comonad) interaction laws. We
model the notion of effect using a monad T following Moggi [10], and the notion
of coeffect using a comonad D, as pioneered by Power and Shkaravska [18].
The environment interacts with the effects, resolving some, ignoring others, and
potentially producing new effects. A residual monad R is specified to capture
these ignored and newly produced effects. This process of interaction is for-
malised using an R-residual interaction law between T and D.
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 186–205, 2020.
https://doi.org/10.1007/978-3-030-64437-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_10&domain=pdf
http://orcid.org/0000-0002-1297-0579
http://orcid.org/0000-0001-6650-3493
https://doi.org/10.1007/978-3-030-64437-6_10

Algebraic and Coalgebraic Perspectives on Interaction Laws 187

But there is more to say about running computations in interaction with
environments from the “pragmatic” point of view: namely, how information is
extracted from completed runs and how environments are prepared for runs.

We use algebras to interpret outcomes of completed runs, i.e., residual com-
putations. Under favourable circumstances, algebras ξ : RX → X for a set of
values X can be used to extract a single value from a computation over values; in
this situation one often talks of them as handlers [16]. More generally, algebras
can be used to observe or test computations, in terms of a set Z of observables
(generalized truth values), as done, e.g., by Hasuo [5]. Algebras ζ : RZ → Z lift
value predicates P : X → Z to computation predicates ζ ◦ RP : RX → Z.

Coalgebras χ : Y → DY , on the other hand, can be used to specify the
environment that any initial state yields; an environment itself describing the
response and state-change behaviour of a world a computation may be placed
in. The carrier of such a coalgebra is the state set of the environment.

In this paper, we show that, given an algebra of R with carrier Z describ-
ing the handling of computations over observables, and a coalgebra of D with
carrier Y describing the production of environments over states, we can turn an
R-residual interaction law between T and D into a single algebra on T . This
resulting algebra with carrier Y ⇒ Z handles computations over state predi-
cates, and can be used to describe, in one go, the behaviour of the whole system.
This combination of tools gives rise to an isomorphism between the category of
R-residual interaction laws between T and D and the category of merge functors,
which merge coalgebras of D into algebras of R to form algebras of T .

We look at three running examples. One example is a computation which
requests probabilistic weights from the environment for resolving nondetermin-
istic choices. These weights are stored in the residual computation of weighted
probabilistic choices. The second example incorporates an uncertain data reader,
in which repeated state readings may be necessary before an effect is resolved,
and each reading has an associated cost. We see this cost as an emergent effect
resulting from the interaction, which we put in the residual computation. The
last example combines probability with a comonadic model of global store.

There are many applications for this result on combining algebras, coalgebras
and interaction laws. Firstly, it allows us to add program-environment inter-
action on top of pre-existing effect descriptions. For instance, if we have an
algebra for an effect, e.g. a handler or some predicate lifting, it can be com-
pleted with an interaction law in order to add environments to the picture. This
can, for instance, be seen in the last example, where we add global store to
probability. Secondly, using algebras also enables us to describe more fully sit-
uations of program-environment interaction that cannot be analyzed in terms
of an interaction law alone, as seen in the other two running examples. We
thus obtain a flexible framework for describing, and potentially implementing,
program-environment interactions.

The running examples are implemented using algebraic effects in the sense of
Plotkin and Power [14,15] (see also Bauer [3]), which use effect operations from
a signature that can be encoded by a functor F . To easily construct interaction

188 T. Uustalu and N. Voorneveld

laws, we use functor-comonad interaction laws. Such a law between F and D can
be extended to an interaction law between the free monad on F and comonad
D via an isomorphism.

Two additional descriptions lie between interaction laws and merge functors.
Combining interaction laws only with coalgebras yields stateful runners [7,20],
and combining them only with algebras yields a novel concept of continuation-
based runners, lifting an environment over value predicates to a single predicate
on computations over values. Both types of runners can also be described as
monad morphisms.

The next two sections give some preliminaries, where Sect. 2 focusses on
formulating handler algebras and producer coalgebras, and Sect. 3 studies inter-
action laws. Section 4 introduces merge functors, and Sect. 5 establishes their
isomorphism with interaction laws. Section 6 presents a way to formulate inter-
action laws locally on effect operations, and lastly, Sect. 7 talks about stateful
and continuation-based runners.

We introduce the categorical concepts necessary for following the main story
of the paper, but side remarks use more advanced category theory. Throughout
the paper, we work with one Cartesian closed base category C. The examples
are all for Set. We write Y ⇒ Z and occasionally ZY for exponents.

2 Effect Handling and Coeffect Production

2.1 Effect Handling

Effectful programs may produce multiple return values, no return values, or dif-
ferent return values in different situations, and they may communicate informa-
tion to the environment. Following Moggi [10], the behaviours of such programs
are abstracted into effectful computations. Effectful computations over a set of
return values X are elements of the set TX for T some monad. A computation
represents the behaviours of the program in terms of the requests it makes to
the world (effects) it is run in and values it eventually can return depending on
how the requests are responded.

Given a computation t ∈ TX over the set of return values X, we may want
to retrieve a single return value. To this end, we can use a monad algebra of T .

Definition 1. An algebra ξ : TX → X of the underlying functor of a monad
T = (T, ηT , μT) is said to be a monad algebra if it satisfies the following equa-
tions:

X
ηT

X �� ���
���

�

���
���

�

TX
ξ

�� X

TTX
μT

X ��

Tξ �� TX
ξ��

TX
ξ

�� X

We denote the category of monad algebras of T by Alg(T). The Kleisli
category Kl(T) is isomorphic to the full subcategory of Alg(T) given by monad
algebras μT

X : T (TX) → TX (the free algebras).

Algebraic and Coalgebraic Perspectives on Interaction Laws 189

Besides directly extracting a return value from a computation, we can also use
algebras to make observations about computations. Suppose that X is some set
of values, Z is a set of observables, perhaps (generalized) truth values, and that
RX for R some monad is the set of effectful computations over these values.
Given a morphism P : X → Z that assigns observables to values (is a value
predicate), an algebra ζ : RZ → Z associates an observable to any given effectful
computation via ζ ◦ RP : RX → Z (is a computation predicate).

Consider, for instance, the distributions monad D. A randomized computa-
tion is represented by an element t ∈ DX for some value set X. Not every set
X can be (meaningfully) endowed with an algebra structure ξ : DX → X: there
may be no way of combining the many possible return values x ∈ X appearing
in a computation t ∈ DX into a single value.

A solution to this issue is to work with observations. We use a set of observ-
ables Z, which in this case we can take to be probabilities, the real number
interval from 0 to 1 denoted by [0, 1]. Given some predicate on return values
P : X → Z (assigning a probability to each x ∈ X), we can transform t ∈ DX
into (DP)(t) ∈ D[0, 1]. We then use an algebra E : D[0, 1] → [0, 1] for calculating
expectations to compute an observed probability for t.

We can take a more syntactical approach, describing effects using algebraic
effect operations [15]. We consider a signature of effect operations Σ, each oper-
ation op having an arity given by an object of the category ar(op) ∈ C. This
arity tells us how many possible continuations there are for a program when this
effect is encountered. For instance, a binary choice operation would have arity
2, meaning there are two continuations.

Given such a signature Σ, we generate the free monad TΣX := μV.X +∑
op∈Σ(ar(op) ⇒ V). Given f : ar(op) ⇒ TΣX, we write op(f) ∈ TΣX for the

appropriate element in TΣX. If ar(op) = n = {0, . . . , n − 1} and t0, . . . , tn−1 ∈
TΣX, we may alternatively write op(t0, . . . , tn−1).

Example 1 (Probabilistic weights). Consider computations which can, for each
q ∈ [0, 1], have a q-weighted probabilistic binary choice orq with ar(orq) = 2.
Let Σ := {orq | q ∈ [0, 1]}, with computations over Z living in the free monad
RZ := TΣZ of binary leaf trees with nodes labelled with weights. As observables,
we take expectations of truth [0, 1], and we inductively define our algebra Exp :
R[0, 1] → [0, 1] by Exp(orq(x, y)) := (1 − q)Exp(x) + qExp(y).

Example 2 (Cost of computations). We consider a simpler example where we
associate a cost to certain computation steps. This can for instance represent
time investment, or expenditure of some other resource like memory or energy.
We consider a single tick operation Σ := {tick} with arity 1, and allow com-
putation to continue forever: RZ := νW.Z + W . This monad is given by final
coalgebras, not initial algebras, i.e., is not the free monad on the identity functor,
but the free completely iterative monad in the sense of Aczel et al. [1], infor-
mally, the smallest monad that supports both the tick operation and (guarded)
iteration. As an algebra, we take the cost tallying device Tal : R(N∞) → N∞
given by Tal(tick(t)) = 1 +Tal(t) for finite sequences of ticks and Tal(t) = ∞ for
t the infinite sequence of ticks.

190 T. Uustalu and N. Voorneveld

2.2 Coeffect Production

On the other side of the story, we consider environments. They react to requests
of the computation, but are otherwise passive. An environment reacts to requests
by responding, and it also has a state that it changes as it responds. Such a
process is called coeffectful. Notions of coeffect can be modelled with a comonad
D. Environments over a state set Y are elements of DY ; an environment is a
description of the response and state-change behaviour of the world, including
an initial state, which can be extracted using the counit εY .

Most of the work on coeffects modelled by comonads has concentrated on
scenarios where a notion of computation is coeffectful by primarily relying on
coeffect consumption (coeffect cooperations); computations are modelled by co-
Kleisli arrows, e.g., [12,22]. Typical examples of this are computations with
causal stream functions (dataflow computation) and stencil computations (a.k.a.
cellular automata) [4,21]. Here, in contrast, we are interested not in coeffectful
computations, but in coeffectful environments. Central for us in this endeavour
are coeffect producers, which are coalgebras of the comonad. They assign to every
initial state drawn from a fixed state set an environment in a consistent way:
given an environment assigned to some initial state by a coeffect producer, its
continuation from any point must be obtainable by applying the coffect producer
to the state reached by that point as the new initial state. See, e.g., [13,18,20]
for examples.

Definition 2. An coalgebra χ : Y → DY of the underlying functor of a comonad
D = (D, ε, δ) is called a comonad coalgebra if it satisfies the following equations:

Y

DY

εY

��

Y
χ

��

�������

�������

DDY DY
Dχ��

DY
δY

��

Y

χ
��

χ
��

Let Coalg(D) be the category of comonad coalgebras on D. The coKleisli cat-
egory CoKl(D) is isomorphic to the full subcategory of Coalg(D) given by
comonad coalgebras δY : DY → D(DY) (the cofree coalgebras).

To facilitate the description of examples, we can again take a more syntactical
approach. Typically, a coeffect is described using coalgebraic cooperations. We
consider a signature Π of such cooperations, each cop ∈ Π having an arity
ar(cop) ∈ C. The arity gives the range of responses the environment can give.

The state of the environment contains for each cooperation a particular
response and a new environment. Given a signature Π, we consider the cofree
comonad DΠY := νW. Y × Πcop∈Π(ar(cop) × W). Supposing e ∈ DΠY and
cop ∈ Π, we have that cop(e) ∈ ar(cop) × DΠY is a pair (c, e′) consisting of a
piece of data c provided by the environment and the continuation of the envi-
ronment e′.

Example 3 (Stream of data). Given some object of data C, we consider an envi-
ronment which can supply a stream of datapoints from C. We take one coop-
eration Π := {give} of arity C, and consider the comonad DY := DΠY ∼=

Algebraic and Coalgebraic Perspectives on Interaction Laws 191

νW. Y × (C × W) ∼= (Y × C)N of streams over Y × C. As environment we take
E := CN ∼= D1. The producer is the cofree coalgebra δ1 : E → DE, which sends
a stream σ to δ1(σ) where give(δ1(σ)) := (σ(0), δ1(λn. σ(n + 1))).

Example 4 (Global store). We consider a set of data C, and an environment
which has one datapoint from C stored in its memory. We have Π := {give} ∪
{changec | c ∈ C}, where ar(give) := C and ar(changec) := 1. We can take
DY := DΠY ∼= νW.Y × (C × W) × (1 × W)C to be the cofree comonad, which
allows for giving and receiving data C. A producer for a global store environment
generates from a global state the appropriate environment which acts in the
following way: (1) when data is provided on request, the internal state does
not change, and (2) when data is received, the environment changes its internal
state accordingly. We formulate the producer GS : Y → DY with Y := C where
give(GS(c)) := (c,GS(c)) and changed(GS(c)) := (∗,GS(d)). A smaller comonad
defined by D′Y := C×(C ⇒ Y) allows only producers that obey the coequations
of global store; these amount to arrays, a.k.a. lenses. The set D′Y consists of the
elements of DY satisfying the coequations; as seen in the literature [13,18].

3 Interaction Laws

We now formulate how computations can interact with environments, with coef-
fects reacting to effects. Supposing we have the effects of interest described by
some monad T , and the coeffects by a comonad D, an interaction law between
T and D tells us how coeffects can be used to resolve effects.

In general, not all effects of a computation may be resolved by the environ-
ment it is run against. Moreover, the interaction between effects and coeffects
may produce new effects. We therefore use another monad R = (R, η, μ) for
residual effects. We study R-residual interaction laws of T and D by Katsumata
et al. [7]. They are an elaboration of ideas and abstraction of concepts by Plotkin
and Power [13] and Møgelberg and Staton [9].

Definition 3. An R-residual interaction law of T = (T, ηT , μT) and D =
(D, ε, δ) is given by a natural transformation typed ψ

(1)
X,Y : TX×DY → R(X×Y)

satisfying the (co)unit and (co)multiplication agreement equations

X × Y X × Y

ηX×Y

��
X × DY

X×εY �������

ηT
X ×DY

����
���

T X × DY

ψX,Y�� R(X × Y)

T T X × DDY

ψT X,DY�� R(T X × DY)
RψX,Y�� RR(X × Y)

μX×Y

��
T T X × DY

T T X×δY ��������

μT
X ×DY

		���
���

T X × DY

ψX,Y �� R(X × Y)

By the Yoneda lemma, a natural transformation ψ(1) above can be alterna-
tively given as a natural transformation typed 1

ψ
(0)
X,Y,Z : C(X × Y,Z) → C(TX × DY,RZ)

1 Note that this is not the same in general as to have a natural transformation typed
X × Y ⇒ Z → TX × DY ⇒ RZ.

192 T. Uustalu and N. Voorneveld

and therefore by Currying and symmetry also by natural transformations

ψ
(2)
X,Z : D(X ⇒ Z) → TX ⇒ RZ, ψ

(3)
Y,Z : T (Y ⇒ Z) → DY ⇒ RZ.

In this paper, we use all these formats, especially the 3rd in the next few sections.
Translating the equations of interaction laws into the 3rd format, we get:

Y ⇒ Z
ηT

Y ⇒Z��

εY ⇒ηZ

��
����

T (Y ⇒ Z)
ψY,Z��

DY ⇒ RZ

TT (Y ⇒ Z)

μT
Y ⇒Z ��

TψY,Z�� T (DY ⇒ RZ)
ψDY,RZ�� DDY ⇒ RRZ

δY ⇒μZ��
T (Y ⇒ Z)

ψY,Z

�� DY ⇒ RZ

We will write MCILR(T,D) for the set of R-residual interaction laws between
T and D (ignoring the exact format chosen).

The intuition for interaction laws is as follows. In the 0th format, X is the
set of return values of computations, Y is the state set of environments and Z is
the set of observables (or truth values). An interaction law ψ says that, as soon
as we know how to observe a value-state pair, a computation over values and an
environment can be combined to yield a computation over observables. It must
be natural in X, Y , Z to reflect that interactions only pass values, states and
observables around, but do not inspect them. In the 1st format, the observables
are X × Y , i.e., value-state pairs are directly observable. In the 2nd format, the
states of environments are X ⇒ Z, i.e., value predicates. In the 3rd format, the
values that given computations return are Y ⇒ Z, i.e., state predicates.

Later in the paper, we will use algebras and coalgebras to explain what
interaction laws do in different terms.

Example 5 (Probabilistic weight requester). In this example, computations may
have to make certain binary choices. They are represented by binary trees TX :=
TΣ′X where Σ′ has one operation or of arity 2. To make a nondeterministic
choice, a computation requests a probabilistic weight from its environment. This
environment is given by a stream DY of such weights as in Example 3, using as
data object C := [0, 1]. Having received a weight for each choice, it generates a
tree of probabilistic choices: RZ := TΣZ as in Example 1. This is done using an
interaction law ψY,Z : T (Y ⇒ Z) → DY ⇒ RZ where:

– ψY,Z(or(a, b))(e) := orq(ψY,Z(a)(e′), ψY,Z(b)(e′)), if (q, e′) = give(e).

Example 6 (Uncertain stream reader). We use DY as in Example 3, and consider
a computation which can request datapoints (elements of a set C) from its
environment. Programs use one effect operation Σ′ := {get} with ar(get) := C
and TX := TΣ′X. Upon a request, the environment will keep giving datapoints
until it gives the same datapoint twice in a row. We associate to each give a cost,
which we store with a tick in the residual computation in RZ := νW.Z + W , as
given in Example 2. We describe this multistep protocol with the interaction law
ψY,Z as follows: given e ∈ DY , with (c0, e0) := give(e), and (c1, e1) := give(e0):

– ψY,Z(get(f))(e) :=

{
tick(tick(ψY,Z(f(c0))(e1))) if c0 = c1,

tick(ψY,Z(get(f))(e0)) if c0
= c1 .

Algebraic and Coalgebraic Perspectives on Interaction Laws 193

Example 7 (Combining global store with probability). Lastly, we consider a more
traditional example, where some but not all effects are resolved, and no new
effects are generated. Take Σ and Π from Examples 1 and 4 respectively, and let
Σ′ := Σ+{lookup, updatec | c ∈ C} where ar(lookup) := C and ar(updatec) := 1.
We take computations which can request and update a global store, and make
probabilistic choices, denoted by TX := TΣ′X. As comonad we use the environ-
ment DY := DΠY , and as residual monad RZ := RΣZ the weighted choice
trees. The interaction law ψY,Z resolves only the global store requests. For
e ∈ DY , let (c, e′) := give(e), and for each d ∈ C let (∗, ed) := changed(e),
then

– ψY,Z(lookup(f))(e) := ψY,Z(f(c))(e′),
– ψY,Z(updated(t))(e) := ψY,Z(t)(ed),
– ψY,Z(orq(a, b))(e) := orq(ψY,Z(a)(e), ψY,Z(b)(e)).

In Sect. 6, we discuss a method for showing that the above constructions
satisfy the unit and multiplication equations for interaction laws.

Katsumata et al. [7] proved that R-residual interaction laws of T , D are in a
bijection with monad morphisms from T to the monad D −� R where D −� − is
the right adjoint of −�D and � is the Day convolution. This monad is explicitly
given by (D −� R)X =

∫
Y

DY ⇒ R(X × Y) ∼= ∫
Y,Z

C(X × Y,Z) � (DY ⇒
RZ) ∼= ∫

Z
D(X ⇒ Z) ⇒ RZ (with

∫
with subscript for ends and � for powers).

A morphism between two interaction laws (T,D,R, ψ) and (T ′,D′, R′, ψ′)
is given by (co)monad morphisms t : T → T ′, d : D′ → D and r : R → R′

satisfying the left equation below for the 1st format and the right equation for
the 3rd format:

TX × DY
ψX,Y�� R(X × Y)

rX×Y

��
TX × D′Y

TX×dY ������

tX×D′Y
��				

T ′X × D′Y
ψ′

X,Y�� R′(X × Y)

T (Y ⇒ Z)
ψX,Y��

tY ⇒Z

��

DY ⇒ RZ

dY ⇒rZ

��
T ′(Y ⇒ Z)

ψ′
X,Y�� D′Y ⇒ R′Z

(Note the direction of d.) Interaction laws form a category. The bijection with
monad morphisms extends to an isomorphism of categories, see [7].

4 Merge Functors

We are interested in how interaction laws can be combined with algebras for han-
dling residual effects and coalgebras for producing coeffects. In general, we get
what we call a merge functor. This merges a coalgebra into an algebra creating
a new algebra.

Definition 4. A merge functor for T,D,R is given by a functor M :
(Coalg(D))op × Alg(R) → Alg(T) which is carrier-exponentiating:

(Coalg(D))op × Alg(R) M ��

Uop×U��

Alg(T)
U��

Cop × C ⇒ �� C

194 T. Uustalu and N. Voorneveld

U are the relevant forgetful functors, which are the left (resp. right) adjoints of
the co-Eilenberg-Moore (resp. Eilenberg-Moore) adjunctions of D (resp. R, T).

Note in particular the three conditions which need to hold for M to be a
merge functor:

– Every functor algebra in the image of M needs to be a monad algebra;
– M needs to be functorial in its comonad coalgebra and monad algebra argu-

ments, sending coalgebra and algebra morphisms to an algebra morphism;
– On the level of carriers, M needs to be the exponentiation function.

Here is a variation of merge functors. A Kleisli merge functor for T,D,R is
a functor N : (CoKl(D))op × Kl(R) → Alg(T) which is carrier-exponentiating
in the sense that

(CoKl(D))op × Kl(R) N ��

F op×F��

Alg(T)
U��

Cop × C ⇒ �� C
where F : CoKl(D) → C is the left adjoint of the coKleisli adjunction of D and
F : Kl(R) → C is the right adjoint of the Kleisli adjunction of R.

Here and in the rest of this paper, when we refer to CoKl(D), we mean the
full subcategory of Coalg(D) given by the cofree coalgebras, which is isomorphic,
and similarly for Kl(R) and the full subcategory of Alg(R) given by the free
algebras. Under this view, the two functors F are still forgetful functors.2

Proposition 1. Any Kleisli merge functor has a unique extension to merge
functors. This gives us a bijection between the sets of merge functors and Kleisli
merge functors for T,D,R:

(CoKl(D))op × Kl(R) →ce. Alg(T)

(Coalg(D))op × Alg(R) →ce. Alg(T)

(where ‘ce.’ stands for carrier-exponentiating).

To see why this is, let us observe the following. Suppose we have a merge
functor M : Coalg(D)op × Alg(R) → Alg(T). For any comonad coalgebra
χ : Y → DY and any monad algebra ζ : RZ → Z, by functoriality of M and
the counit and unit equations of χ and ζ, we have

T (Y ⇒ Z)
T (εY ⇒ηZ)

T (DY ⇒ RZ)
M(δY ,μZ)

T (χ⇒ζ)

DY ⇒ RZ
χ⇒ζ

T (Y Z)
M(χ,ζ)

Y Z

This uses functoriality of M on the facts that χ is a coalgebra morphism from χ
to δY and that ζ is an algebra morphism from μZ to ζ, which are consequences
of the comultiplication and multiplication equations of χ and ζ.
2 Namely, they send δD

Y and μR
Z to DY and RZ respectively.

Algebraic and Coalgebraic Perspectives on Interaction Laws 195

So any merge functor is determined by its Kleisli merge sub-functor. We
therefore have but one candidate for extending a given Kleisli merge functor N :
(CoKl(D))op × Kl(R) → Alg(T) into a merge functor N̂ , which is: N̂(χ, ζ) =
(χ ⇒ ζ) ◦ N(δY , μZ) ◦ T (εY ⇒ ηZ). It is easy to show that N̂ is functorial and
that the functor algebras it delivers are monad algebras.

5 The Interaction Law, Merge Functor Isomorphism

Given an interaction law ψ, we define a Kleisli merge functor Mψ as follows. For
a cofree coalgebra δY : DY → DDY and a free algebra μZ : RRZ → RZ, we
construct an algebra

Mψ(δY , μZ) := T (DY ⇒ RZ)
ψDY,RZ�� DDY ⇒ RRZ

δY ⇒μZ�� DY ⇒ RZ.

Mψ is easily seen to be functorial and delivering monad algebras.
The construction M(−) gives rise to the following coincidence.

Proposition 2. There is a bijection between R-residual interaction laws of T
and D, and Kleisli merge functors for T,D,R:

MCILR(T,D)

(CoKl(D))op × Kl(R) →ce. Alg(T)

We need to show that the construction M(−) gives a bijection. We do this by
explicitly defining the inverse. Given a Kleisli merge functor M : (CoKl(D))op×
Kl(R) → Alg(T), we construct a natural transformation

ψM
Y,Z := T (Y ⇒ Z)

T (εY ⇒ηZ)�� T (DY ⇒ RZ)
M(δY ,μZ)�� DY ⇒ RZ

It is easy to verify that ψM fulfills the conditions of an interaction law.

Lemma 1. The construction ψ(−) is an inverse to the construction M(−).

Proof. We show that ψMψ = ψ.

T (Y ⇒ Z)
T (εY ⇒ηZ)

TηT
Y ⇒Z

T (DY ⇒ RZ)
ψDY,RZ

Mψ(δY ,μZ)

DDY ⇒ RRZ
δY ⇒μZ

DY ⇒ RZ

TT (Y ⇒ Z)
TψY,Z

μT
Y ⇒Z

T (Y ⇒ Z)
ψY,Z

The diagram commutes by the definition of Mψ, the (co)unit and
(co)multiplication equations of ψ, and right unitality of T . As the path at the
top is the constructed interaction law ψMψ , and that at the bottom is the given
interaction law ψ, the two coincide.

196 T. Uustalu and N. Voorneveld

We show that MψM = M :

T (DY ⇒ RZ)
T (εDY ⇒ηRZ)

ψM
DY,RZ

T (DDY ⇒ RRZ)
T (δY ⇒μZ)

M(δDY ,μRZ)
DDY ⇒ RRZ

δY ⇒μZ

T (DY RZ)
M(δY ,μZ)

DY RZ

The diagram commutes by the definition of ψM , left unitality of D and R and
functoriality of M applied to the facts that δY and μZ are (co)algebra morphisms.
Following the top path, we get the constructed merge function MψM , whereas
following the bottom path yields the given merge function M . We conclude that
the two coincide. ��

This finishes the proof of Proposition 2. Combining this with Proposition 1,
we have proved the following.

Corollary 1. There is a bijection between R-residual interaction laws of T , D
and merge functors for T , D, R.

Explicitly, the bijection of Corollary 1 sends an interaction law ψ to Mψ :
(Coalg(D))op × Alg(R) → Alg(T) which does:

Mψ(χ : Y → DY, ζ : RZ → Z) := T (Y ⇒ Z)
ψY,Z �� DY ⇒ RZ

χ⇒ζ �� Y ⇒ Z .

Example 8 (Probabilistic weight requester). We use the interaction law ψ from
Example 5 to merge the coalgebra δ1 from Example 3 into the algebra Exp from
Example 1. We get Mψ(δ1,Exp) : T (E ⇒ [0, 1]) → E ⇒ [0, 1], with as carrier
set the [0, 1]-valued predicates on streams E = [0, 1]N. Suppose we have some
predicate P : X → E ⇒ [0, 1] giving some expectation to each return value
and final state. Then, given some computation t ∈ TX, we can find the weakest
precondition Mψ(δ1,Exp)(TP (t)) ∈ E ⇒ [0, 1], which gives, for each initial state
e of the environment, the expectation of the computation, determined by the
postcondition P on the return value and the final states yielded.

Example 9 (Uncertain stream reader). We use the interaction law ψ from Exam-
ple 6 to merge the coalgebra δ1 from Example 3 into the algebra Tal from Exam-
ple 2. We get Mψ(δ1,Tal) : T (E ⇒ N∞) → E ⇒ N∞, with as carrier set
N∞-valued predicates on streams E = CN. This merged algebra computes,
for each initial state of the environment, how many responses the environment
gives during the interaction, and adds it to the perceived value of the final
state. Streams which behave unreliably will naturally give more datapoints,
as they create more uncertainty. For instance, the stream 10000 . . . will make
a program return the same values as the stream 0000 . . . , but it may invoke
more ticks (one more tick) than the latter. So, for each t ∈ T (E ⇒ N∞),
Mψ(δ1,Tal)(t)(10000 . . .) ≥ Mψ(δ1,Tal)(t)(0000 . . .).

Algebraic and Coalgebraic Perspectives on Interaction Laws 197

Example 10 (Combining global store with probability). Lastly, we use the interac-
tion law ψ from Example 7 to merge GS from Example 4 into Exp from Example 1.
We retrieve the algebra Mψ(GS,Exp) : T (C ⇒ [0, 1]) → C ⇒ [0, 1] from previous
work [23], whose carrier set is given by [0, 1]-valued store predicates.

We have not yet specified what a morphism between merge functors is.
We define them so that they will coincide with morphisms between interac-
tion laws. We say that a morphism between two merge functors (T,D,R,M)
and (T ′,D′, R′,M ′) is a triple of (co)monad morphisms t : T → T ′, d : D′ → D
and r : R → R′ such that, for any comonad coalgebra χ : Y → D′Y and any
monad algebra ζ : R′Z → Z, M ′(χ, ζ) ◦ tY ⇒Z = M(dY ◦ χ, ζ ◦ rZ).

Proposition 3. A triple (t, d, r) of (co)monad morphisms forms a morphism
between interaction laws ψ and ψ′ if and only if it is a morphism between merge
functors Mψ and Mψ′ .

Corollary 2. The category of residual interaction laws is isomorphic to the cat-
egory of merge functors, thus preserving the underlying (co)monads.

Since the isomorphism preserves the underlying (co)monads of its objects, we
can also fix some of T , D, and R, and the isomorphism still holds. For instance,
we get an isomorphism between R-residual interaction laws for some fixed R,
and the category of merge functors for the same fixed R, with D and T varying.

6 Interaction Laws for Free Monads

One thing we have not yet done is show that the interaction laws of the exam-
ples satisfy the unit and multiplication equations. This is often tedious to do
in practice. In this section, we discuss a recipe for generating interaction laws
when T is a free monad. This recipe is exhaustive and without redundancy: it
generates all interaction laws exactly once. We start with a general Cartesian
closed category C first, and do some further simplifications for Set later on.

Given a functor F , the underlying functor T of the free monad on F is given
by initial algebra carriers: TX := μV.X +FV . The structure maps X +FTX →
TX split into ηT

X : X → TX and σX : FTX → TX. The unit is ηT
X and the

multiplication μT
X is the unique solution to the initial algebra diagram:

TX
ηT

T X ��

���
���

�

���
���

� TTX
μT

X��

FTTX
FμT

X��

σT X��

TX FTX
σX��

Now R-residual interaction laws between D and T can be defined in “small
steps”, in terms of F , giving rise to the following result.

Proposition 4. If T is the free monad on F , then there is a bijection between
R-residual interaction laws of T , D and natural transformations typed φY,Z :
F (Y ⇒ Z) → DY ⇒ RZ (subject to no equations!).

198 T. Uustalu and N. Voorneveld

The natural transformation φY,Z given above can also be seen as a functor-
comonad interaction law ; an intermediate between functor-functor and monad-
comonad interaction laws of Katsumata et al. [7].

Given a functor-comonad interaction law φY,Z , we construct a natural trans-
formation ψY,Z as the unique solution of the following initial algebra diagram:

Y ⇒ Z
ηT

Y ⇒Z��

εY ⇒ηZ 		

 T (Y ⇒ Z)
ψY,Z��

FT (Y ⇒ Z)
σY ⇒Z��

FψY,Z��
DY ⇒ RZ DDY ⇒ RRZ

δY ⇒μZ�� F (DY ⇒ RZ)
φDY,RZ��

The natural transformation ψ satisfies the equations of a monad-comonad inter-
action law. In the reverse direction, we extract from a given monad-comonad
interaction law ψ a natural transformation φ as follows:

φY,Z := F (Y ⇒ Z)
FηT

Y ⇒Z�� FT (Y ⇒ Z)
σY ⇒Z �� T (Y ⇒ Z)

ψY,Z �� DY ⇒ RZ

Combining the proposition with Corollary 1, we get a corollary exploiting
that the category Alg(T) is isomorphic to alg(F).

Corollary 3. There is a bijection between R-residual functor-comonad interac-
tion laws of F and D and functors (Coalg(D))op × Alg(R) → alg(F) that are
exponentiation on the level of carriers.

In the particular case of our examples, where FX :=
∑

op∈Σ(ar(op) ⇒ X),
the functor-comonnad interaction law φ required for specifying the monad-
comonad interaction law ψ decomposes, for each effect operation op ∈ Σ,
into a transformation ar(op) ⇒ (Y ⇒ Z) → DY ⇒ RZ natural in Y and
Z, an operation-wise interaction law. If R is strong and these natural trans-
formations are strong in Z, which holds for our examples since they are in
the category of sets, these natural transformations amount to transformations
φop

Y : DY → R(ar(op) × Y) natural in Y for each operation op.
The transformation φop

Y specifies what happens when the operation op is
encountered in the evaluation of some program. It tells us, given an environment,
which effects are encountered, which continuation is chosen for the program, and
what the new state is. The resulting interaction law ψ induced by our φ’s given
Proposition 4 will satisfy the following equation:

ψY,Z(op(t1, . . . , tn))(e) = μZ(R(λ(i, e′).ψY,Z(ti)(e′)) (φop
DY (δY (e)))) (1)

We show that the interaction laws for the examples satisfy the desired equa-
tions. This is done by specifying the natural transformations in such a way that
the induced Eq. 1 coincides with the specification required in the examples.

For Example 5, where we have one operation or of arity 2 = {0, 1}, we define:
φor

Y (e) := orq(ηZ(0, y), ηZ(1, y)), where (q, e′) := give(e) and y := εY (e′). The
transformation φor, which is obviously natural, tells us to allocate a probability
of q to continue with 0, and 1 − q probability to continue with 1, and to finish
in both cases in the next state, which is y.

Algebraic and Coalgebraic Perspectives on Interaction Laws 199

The local transformation for Example 6 is slightly more involved. Here we
have an effect operation get of arity C. The transformation φget

Y : DY → R(C×Y)
keeps applying give until the same data point comes out twice in a row (which
may never happen) and returns the corresponding number of ticks and that data
point and the final state (or an infinite sequence of ticks).

It is possible to design methods for defining interaction laws, using the above
ideas. We would specify how to naturally generate three things from the environ-
ment: (1) which residual effects we get, (2) what piece of data is communicated
to the program (the continuation), and (3) what is the state afterwards.

7 Runners

We have seen how an interaction law can be combined with a coalgebra of
D and an algebra of R to yield an algebra of T . There are also intermediate
constructions, combining the interaction law with only a coalgebra or an algebra.
Depending on the choice, we get different results. Since they amount to monad
morphisms from T to other monads, it is justified to call them runners.

7.1 Stateful Runners

Combining interaction laws with just coalgebras (rather than coalgebras and
algebras) yields stateful runners in the sense of Uustalu [20].

An R-residual stateful runner of T for an object Y ∈ C is a natural transfor-
mation typed θX : TX ×Y → R(X ×Y) subject to appropriate equations. With
the appropriate concept of map, stateful runners make a category RunR(T).

The following result gives alternative characterizations of stateful runners.

Proposition 5. For any object Y ∈ C, the following sets are in bijection:

1. R-residual stateful runners of T with carrier Y ,
2. monad morphisms from T to StRY , the R-transformed state monad for state

set Y , defined by StRY X := Y ⇒ R(X × Y),
3. functors Θ : Alg(R) → Alg(T) such that

Alg(R) Θ ��

U ��

Alg(T)
U��

C Y ⇒− �� C
The bijection between the first two items was pointed out in previous work [7,20].
These bijections extend to isomorphisms of the relevant total categories such as
RunR(T).

From the bijection between the 1st and 3rd item, by Corollary 1, we can
conclude that interaction laws are in bijection with D-coalgebraic specifications
of runners, which we define to be carrier-preserving functors Ψ : Coalg(D) →
RunR(T). Katsumata et al. [7] proved this bijection directly, rather than from
Corollary 1 and Proposition 5, circumventing functors Alg(R) → Alg(T).

200 T. Uustalu and N. Voorneveld

Explicitly, given an interaction law ψ (in the 1st format), the runner spec Ψ
for comonad coalgebras χ : Y → DY is given by

(Ψ χ)X := TX × Y
TX×χ �� TX × DY

ψX,Y �� R(X × Y) .

Given a runner spec Ψ , the interaction law is defined by

ψX,Y := TX × DY
(Ψ δY)X �� R(X × DY)

R(X×εY) �� R(X × Y) .

Ahman and Bauer [2] defined runners of T as coalgebras of a specific
comonad, namely the Sweedler dual of T with respect to R, studied in detail by
Katsumata et al. [7]. That comonad is the greatest comonad that T interacts
with R-residually. For that comonad, one has Coalg(D) ∼= RunR(T), justify-
ing this alternative definition. Runners of T for R := Id have also been called
coalgebras of the monad T (notice: coalgebras, not algebras) [17].

Example 11 (Probabilistic weight requester). We look at Example 8 under the
lens of stateful runners. Let Ψ be the coalgebraic specification of runners asso-
ciated to ψ, and consider the runner Ψ(δ1) : TX × E → R(X × E). Given some
computation t ∈ TX and some state of the environment given by a stream of data
σ ∈ CN, the runner produces some weighted choice tree Ψ(δ1)(t, σ) ∈ TΣ(X×E).
In this example, σ is used to label all the nodes of the initial tree t with the
values of the stream σ. If the node has height n in the tree, it will be given label
σ(n). Each leaf of t will be joined with the remainder of the σ leftover after
labelling. For instance, Ψ(δ1) given stream qpqpqpqp . . . will send the following
tree of TX to the given tree in R(X × E):

or
����

� ���
�

or
�� or

�� ��
a or

�� ��
b c

d e

�→ orq
�����

���� ������
����

orp��� ���
orp�� ��

(a, qp..) orq
�� �� (b, qp..) (c, qp..)

(d, pq..) (e, pq..)

7.2 Continuation-Based Runners

If we combine interaction laws with algebras only, we get a novel concept of
continuation-based runners.

We define a D-fuelled continuation-based runner of T for an object Z ∈ C to
be a natural transformation typed θX : D(X ⇒ Z) → TX ⇒ Z satisfying

D(X ⇒ Z)
θX ��

εX⇒Z 		���
����

TX ⇒ Z

ηT
X⇒Z��

X ⇒ Z

D(X ⇒ Z)
θX ��

δX⇒Z ��

TX ⇒ Z

μT
X⇒Z��

DD(X ⇒ Z)
DθX �� D(TX ⇒ Z)

θT X �� TTX ⇒ Z

With the appropriate concept of map, D-fuelled continuation-based runners form
a category CRunD(T).

We make the following observation that also extends to isomorphisms of
categories.

Algebraic and Coalgebraic Perspectives on Interaction Laws 201

Proposition 6. For any object Z ∈ C, the following sets are in bijection:

1. D-fuelled continuation-based runners of T with carrier Z,
2. monad morphisms from T to CntDZ , the D-transformed continuation monad

for answer set Z, defined by CntDZ X := D(X ⇒ Z) ⇒ Z,
3. functors Θ : (Coalg(D))op → Alg(T) such that

(Coalg(D))op Θ ��

Uop
��

Alg(T)
U��

Cop −⇒Z �� C
It follows from Corollary 1 that R-residual T,D-interaction laws are in a bijec-

tion with R-algebraic specifications of D-fuelled continuation-based T -runners,
by which we mean carrier-preserving functors Ψ : Alg(R) → CRunD(T).

Explicitly, given an interaction law ψ in the 2nd format, the corresponding
runner spec Ψ is defined by

(Ψ ζ)X := D(X ⇒ Z)
ψX,Z �� TX ⇒ RZ

TX⇒ζ �� TX ⇒ Z

for monad algebras ζ : RZ → Z. In the reverse direction, given a runner spec Ψ ,
the interaction law ψ is

ψX,Z := D(X ⇒ Z)
D(X⇒ηZ)�� D(X ⇒ RZ)

(Ψ μZ)X �� TX ⇒ RZ .

Continuation-based runners can be understood as a predicate-lifting device:
they lift an environment that has as states Z-valued predicates on values X to
a Z-valued predicate on computations TX.

Example 12 (Uncertain stream reader). We look at Example 9 under the lens
of continuation-based runners. Let Ψ be the algebraic specification of runners
associated to ψ, and consider the runner Ψ(Tal) : D(X ⇒ N∞) → TX ⇒ N∞.
Take P ∈ D(X ⇒ N∞) to be some environment over value predicates as states,
which can be expressed as an element of ((X ⇒ N∞)×C)N given by a stream of
data σ ∈ CN and, for any n ∈ N, a value predicate Pn ∈ X ⇒ N∞, determining
what the cost of any return value would be if it were yielded after n gives.

Given a computation t ∈ TX, the predicate Ψ(Tal)(t) delivered by the runner
computes (1) the number n of gives necessary for reaching its return value x ∈ X
(some number of give responses for each get request made), and (2) the cost
associated to x at that point, which is Pn(x). This predicate then yields the sum
n + Pn(x) as the total cost of the computation.

7.3 Running with Both a Coalgebra and an Algebra Given

A running perspective is possible also in the situation of merge functors where
both a coalgebra and an algebra are given, but nothing too exciting happens. In
this case, we concern ourselves only with the final merged algebra as produced
by the merge functor. Here are some equivalent definitions of monad algebras.

202 T. Uustalu and N. Voorneveld

Proposition 7. For any object W ∈ C, the following sets are in bijection:

1. transformations C(X,W) → C(TX,W) natural in X subject to appropriate
equations,3

2. monad morphisms from T to the “external continuation” monad XCntW for
answer set W ,4 defined by XCntW X := C(X,W) � W ,

3. monad algebras of T with carrier W .

A bijection like that between 2 and 3 holds for T a strong monad when one
replaces the external continuation monad XCntW with the ordinary continuation
monad CntIdW

5 and monad morphisms with strong monad morphisms [8]. In Set,
the two continuation monads are isomorphic, every functor is uniquely strong
and every natural transformation is strong; therefore, the two bijections become
the same.

By Corollary 1, R-residual interaction laws of T , D are in a bijection with
functors sending a comonad coalgebra of D with carrier Y and a monad algebra
of R with carrier Z to a monad algebra of T with carrier Y ⇒ Z. By Propo-
sition 7, such algebras are in a bijection with C(X × Y,Z) → C(TX × Y,Z)
natural in X subject to two equations (“state and continuation based run-
ners”), which amount to natural transformations TX × Y → XCntZ(X × Y)
(XCntZ-residual state-based runners) or XCostY (X ⇒ Z) → TX ⇒ Z
(XCostY -fuelled continuation-based runners) where XCostY W = C(Y,W) • Y
is the “external costate” monad, with • denoting tensor. They are also in a
bijection with monad morphisms to the monad XCntY ⇒Z . This monad is iso-
morphic both to the external-continuation-transformed state monad defined by
XCntStY,ZX := Y ⇒ XCntZ(X × Y) and the external-costate-transformed con-
tinuation monad defined by XCostCntY,ZX := XCostY (X ⇒ Z) ⇒ Z.

8 Conclusion

We have seen isomorphisms between, among others, the following four descrip-
tions of interactions between a computation and an environment.

MCILR(T,D)

������
��� ������

���

[Coalg(D),RunR(T)]cp.

������
��

� [Alg(R),CRunD(T)]cp.

������
��

[(Coalg(D))op × Alg(R),Alg(T)]ce.

where ‘cp.’ means “carrier-preserving” and ‘ce.’ means “carrier-exponentiating”.
The right and bottom corners of the diamond are new. Moreover, just as inter-
action laws are the same as monad morphisms from T to D −� R, for each of the
3 Also known as monad algebras of T with carrier W in “no-iteration” form.
4 Also called the endomorphism monad.
5 Also called the double dualization monad.

Algebraic and Coalgebraic Perspectives on Interaction Laws 203

three types of specializations of interaction laws (based on a coalgebra or/and an
algebra), runners of the corresponding type also amount to monad morphisms
from T to specific monads. This is also new for the right and bottom corners.

Algebras ξ : T (Y ⇒ Z) → Y ⇒ Z delivered by a merge functor do not
mention interaction laws or comonads. As such, they are suitable for develop-
ments purely in terms of monads and their algebras. If an algebra is a continuous
morphism in the category of ω-cpos, and its carrier set forms a complete lat-
tice, then it gives rise to a congruent notion of program equivalence (as seen
in previous work [19,23]). It should be relatively easy to extend developed the-
ory to the algebraically compact setting of ω-cpos, using a construction like the
one from Sect. 6 to specify R-residual interaction laws between D and T for
TX := μV. (X + FV)⊥. We want to investigate what such a notion of program-
environment equivalence would look like.

On the other hand, the merged algebra created using the tools of this paper
can be used as a basis for defining and verifying properties of programs. In partic-
ular, the emphasis on state predicates makes it perfectly suitable for formulating
Hoare logic judgments [6]. Consider a postcondition given by Q : X × Y → Z,
which gives for each possible return value from X and final state from Y a quanti-
tative degree of truth from X. Then, a computation over X, which is an element
t of TX, can be transformed using Q into an element of T (Y ⇒ Z). Using the
merged algebra, we can compute the weakest precondition wp(t,Q) : Y → Z,
associating to each possible initial state the corresponding final degree of truth.
In Hoare logic style, we can then formulate that, given a precondition P : Y → Z,
{P} t {Q} holds if, for all y ∈ Y , P (y) ≤ wp(t,Q)(y) (assuming a partial order on
Z). If this is applied to the example of probability with global store, we retrieve
the usual notion of probabilistic Hoare logic [11]. More generally, we see this
as a potential framework for a flexible Hoare-style logic on (quantitative) state
predicates.

Another subject for future research is the cascading of interaction laws. If we
have two interaction laws, each with their own notion of environment, and the
second interacts with the residual effects of the first, we can combine them into
one. This way, computations interact with two layers of environment simultane-
ously. Using the Day convolution to parallel-compose the comonads representing
the two notions of environment, we can cascade the interaction laws into a sin-
gle law. A similar construction can be done on merge functors so that the two
constructions correspond.

Acknowledgements. Exequiel Rivas found out and told us that stateful runners have
been studied under the name of monad coalgebras.

T.U. was supported by the Icelandic Research Fund project grant no. 196323-052
and by the Estonian Ministry of Education and Research institutional research grant
no. IUT33-13. N.V. was supported by the Estonian IT Academy research measure (the
European Social Fund project no. 2014-2020.4.05.19-0001).

204 T. Uustalu and N. Voorneveld

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comput. Sci. 300(1–3), 1–45 (2003)

2. Ahman, D., Bauer, A.: Runners in action. In: Müller, P. (ed.) ESOP 2020. LNCS,
vol. 12075, pp. 29–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44914-8 2

3. Bauer, A.: What is algebraic about algebraic effects and handlers? arXiv eprint
1807.05923 [cs.LO] (2018). https://arxiv.org/abs/1807.05923

4. Capobianco, S., Uustalu, T.: A categorical outlook on cellular automata. In: Kari,
J. (ed.) Proceedings of 2nd Symposium on Cellular Automata, JAC 2010. TUCS
Lecture Notes, vol. 13, pp. 88–89. University of Turku, Turku (2010)

5. Hasuo, I.: Generic weakest precondition semantics from monads enriched with
order. Theor. Comput. Sci. 604, 2–29 (2015). https://doi.org/10.1016/j.tcs.2015.
03.047

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
26(1), 53–56 (1983). https://doi.org/10.1145/357980.358001

7. Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads.
In: Proceedings of 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2020, pp. 604–618. ACM, New York (2020). https://doi.org/10.1145/
3373718.3394808

8. Kock, J.: On the double dualization monads. Math. Scand. 27, 151–165 (1970).
https://doi.org/10.7146/math.scand.a-10995

9. Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Meth. Comput. Sci. 10(1),
1–52 (2014). https://doi.org/10.2168/lmcs-10(1:17)2014

10. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4. Article 17

11. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996). https://doi.org/10.1145/
229542.229547

12. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: a calculus of context-dependent
computation. SIGPLAN Not. 49(9), 123–135 (2014). https://doi.org/10.1145/
2692915.2628160

13. Plotkin, G., Power, J.: Tensors of comodels and models for operational seman-
tics. Electron. Notes Theor. Comput. Sci. 218, 295–311 (2008). https://doi.org/
10.1016/j.entcs.2008.10.018

14. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

15. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ.
Struct. 11, 69–94 (2003). https://doi.org/10.1023/a:1023064908962

16. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Meth. Comput. Sci.
9(4), 1–36 (2013). https://doi.org/10.2168/lmcs-9(4:23)2013. Article 23

17. Poinsot, L., Porst, H.E.: Internal coalgebras in cocomplete categories: generalizing
the Eilenberg-Watts theorem. J. Algebra Appl. (to appear). https://doi.org/10.
1142/s0219498821501656

18. Power, J., Shkaravska, O.: From comodels to coalgebras: state and arrays. Electron.
Notes Theor. Comput. Sci. 106, 297–314 (2004). https://doi.org/10.1016/j.entcs.
2004.02.041

https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://arxiv.org/abs/1807.05923
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1145/357980.358001
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.7146/math.scand.a-10995
https://doi.org/10.2168/lmcs-10(1:17)2014
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/a:1023064908962
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1142/s0219498821501656
https://doi.org/10.1142/s0219498821501656
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1016/j.entcs.2004.02.041

Algebraic and Coalgebraic Perspectives on Interaction Laws 205

19. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic
effects. ACM Trans. Program. Lang. Syst. 42(1), 1–45 (2020). https://doi.org/10.
1145/3363518. Article 4

20. Uustalu, T.: Stateful runners of effectful computations. Electron. Notes Theor.
Comput. Sci. 319, 403–421 (2015). https://doi.org/10.1016/j.entcs.2015.12.024

21. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Horváth, Z. (ed.)
CEFP 2005. LNCS, vol. 4164. Springer, Heidelberg (2006). https://doi.org/10.
1007/11894100 5

22. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor.
Comput. Sci. 203(5), 263–284 (2008). https://doi.org/10.1016/j.entcs.2008.05.029

23. Voorneveld, N.: Quantitative logics for equivalence of effectful programs. Electron.
Notes Theor. Comput. Sci. 347, 281–301 (2019). https://doi.org/10.1016/j.entcs.
2019.09.015

https://doi.org/10.1145/3363518
https://doi.org/10.1145/3363518
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1007/11894100_5
https://doi.org/10.1007/11894100_5
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2019.09.015
https://doi.org/10.1016/j.entcs.2019.09.015

	Algebraic and Coalgebraic Perspectives on Interaction Laws
	1 Introduction
	2 Effect Handling and Coeffect Production
	2.1 Effect Handling
	2.2 Coeffect Production

	3 Interaction Laws
	4 Merge Functors
	5 The Interaction Law, Merge Functor Isomorphism
	6 Interaction Laws for Free Monads
	7 Runners
	7.1 Stateful Runners
	7.2 Continuation-Based Runners
	7.3 Running with Both a Coalgebra and an Algebra Given

	8 Conclusion
	References

